Complex Analysis Lecture Notes (2024/2025)

Griffin Reimerink

Contents

1	Prel	iminaries 2
	1.1	Complex numbers
	1.2	Sequences and series
	1.3	Continuity of complex functions
2	Holo	omorphic functions
	2.1	Complex derivatives
	2.2	Uniform convergence
	2.3	Inverse functions
3	Path	ı integrals
	3.1	Primitives
		3.1.1 Primitives on disk-like domains
		3.1.2 Primitives on simply connected sets
	3.2	Cauchy integral formula
4	Ana	lytic functions 7
	4.1	Uniqueness of holomorphic functions
	4.2	Maximum and minimum modulus
	4.3	Morera's theorem
5	Sing	gularities
	5.1	Holomorphic functions on line segments
	5.2	Singularities
	5.3	Laurent series
	5.4	Residues
	5.5	Winding numbers
	5.6	Cauchy's residue theorem
		5.6.1 Applications of the residue theorem

1 Preliminaries

1.1 Complex numbers

Algebraic operations on $\mathbb C$

$$(a+bi) + (c+di) = (a+c) + (b+d)i (a+bi)(c+di) = (ac-bd) - (ad-bc)i$$
$$(x+yi)^{-1} = \frac{1}{x+yi} \frac{x-yi}{x-yi} = \frac{x-yi}{x^2-y^2} |x+yi| = \sqrt{x^2+y^2} \overline{x+yi} = x-yi$$

Polar representation of complex numbers

$$z = x + yi = r(\cos\varphi + i\sin\varphi) = re^{i\varphi}$$
 $z_1 z_2 = r_1 r_2 e^{i(\varphi_1 + \varphi_2)}$

Complex roots

$$z^n = re^{i\varphi} \implies z = r^{\frac{1}{n}}e^{\frac{i\varphi}{n} + \frac{i2\pi k}{n}} \quad k \in \{0, 1, \dots, n-1\}$$

Theorem Fundamental theorem of algebra

The polynomial equation $a^n z_n + a^{n-1} z_{n-1} + \ldots + a_0 = 0$ has exactly n solutions in \mathbb{C} .

$\mathbb C$ as a vector space

Multiplication by x + yi can be represented by the matrix $\begin{bmatrix} x & -y \\ y & x \end{bmatrix}$

All $\mathbb C$ -linear transformations are of the form $\begin{bmatrix} a & -b \\ b & a \end{bmatrix}$

1.2 Sequences and series

 \mathbb{C} is a metric space with the metric $d(z_1, z_2) = |z_1 - z_2|$.

Definition Convergent series

The series $\sum_{k=0}^{\infty} z_k$ is **convergent** if its sequence of partial sums converges.

The series $\sum_{k=0}^{\infty} z_k$ is absolutely convergent if $\sum_{k=0}^{\infty} |z_k|$ converges.

Proposition

$$z_n = x_n + iy_n$$
 converges to $z = x + iy \iff x_n$ converges to x and y_n converges to y

Proposition Convergence tests

Ratio test:
$$L = \lim_{k \to \infty} \frac{|z_{k+1}|}{|z_k|}$$
 Root test: $L = \lim_{k \to \infty} |z_k|^{\frac{1}{k}}$

Root test (stronger version, limit always exists): $L = \limsup_{k \to \infty} |z_k|^{\frac{1}{k}}$

If L<1 then $\sum\limits_{k=0}^{\infty}z_k$ converges absolutely. If L>1 then $\sum\limits_{k=0}^{\infty}z_k$ diverges. If L=1 then the test is inconclusive.

Definition Power series

For the power series $f(z) = \sum_{k=0}^{\infty} c_k (z-a)^k$ we define the radius of convergence as $R = \frac{1}{\limsup |c_k|^{\frac{1}{k}}}$. The power series converges for all z with |z-a| < R.

1.3 Continuity of complex functions

We usually require the domain U of a complex function to be open and connected.

Definition Continuous function

A complex function $f: U \to V$ is **continuous** at z_0 if:

for all
$$\varepsilon > 0$$
 there exists $\delta > 0$ such that $|z - z_0| < \delta \implies |f(z) - f(z_0)| < \varepsilon$

Proposition

Polynomials are continuous on \mathbb{C} . Power series are continuous within their radius of convergence.

Proposition

$$f(x+yi)=u(x,y)+iv(x,y)$$
 is continuous $\iff u(x,y)$ and $v(x,y)$ are continuous

2 Holomorphic functions

2.1 Complex derivatives

Definition Complex differentiable function

A complex function $f:U\to V$ is **complex differentiable** at z_0 if the limit $f'(a)=\lim_{z\to a}\frac{f(z)-f(z_0)}{z-z_0}$ exists.

f is **holomorphic** if it is complex differentiable at every point $z_0 \in U$.

f is **entire** if it is a holomorphic function $\mathbb{C} \to \mathbb{C}$.

Definition Real differentiable function

 $f:U\subseteq\mathbb{R}^2\to\mathbb{R}^2$ is **real differentiable** if all of its partial derivatives exist and are continuous.

Theorem Cauchy-Riemann equations

If f is complex differentiable at a, then f satisfies the **Cauchy-Riemann equations** at a:

$$u_x(a) = v_y(a)$$
 $v_x(a) = -u_y(a)$

where $\begin{bmatrix} u_x(a) & u_y(a) \\ v_x(a) & v_y(x) \end{bmatrix} \text{ is the Jacobian matrix at } a \text{ when } f \text{ is viewed as a function } U \subseteq \mathbb{R}^2 \to \mathbb{R}^2.$

Theorem

 $f:U o\mathbb{C}$ is holomorphic $\iff f$ is \mathbb{R} -differentiable and satisfies the Cauchy-Riemann equations $orall a\in U$

2.2 Uniform convergence

Definition Open disk

$$D_r(a) := \{ z : |z - a| < r \}$$

Definition *Uniform convergence*

A sequence of functions $\{f_n\}$ converges uniformly to f on $U \subseteq \mathbb{C}$ if:

$$\forall \varepsilon > 0 \ \exists N \ \text{such that } |f_n(z) - f(z)| < \varepsilon \ \text{for all } n \leq N$$

Lemma

If all f_n are continuous on U and $f_n \to f$ uniformly, then f is continuous on U.

Lemma Weierstrass M-test

If $|f_n(z)| \leq M_n$ for all $z \in U$ and $\sum_{n=0}^\infty M_n$ converges, then $\sum_{k=0}^\infty f_k(z)$ converges uniformly in U.

Lemma

If $\sum\limits_{k=0}^{\infty}a_k$ converges then $\lim\limits_{k\rightarrow\infty}a_k=0$

Theorem Cauchy-Hadamard theorem

 $\sum_{k=0}^{\infty} c_k z^k \text{ converges absolutely for all } z \text{ with } |z| < R \text{ and diverges for } |z| > R \text{, where } R = \frac{1}{\limsup |c_k|^{\frac{1}{k}}}.$ Moreover, the convergence is uniform on $D_s(0)$ for all $0 \le s < R$.

Theorem

$$f(z) = \sum_{k=0}^{\infty} c_k z^k$$
 is \mathbb{C} -differentiable at each z_0 with $|z-z_0| < R$, where $R = \frac{1}{\limsup |c_k|^{\frac{1}{k}}}$.

The derivative is given by $f'(z) = \sum_{k=1}^{\infty} kc_k z^{k-1}$.

2.3 Inverse functions

Theorem Inverse function theorem

If U and V are open subsets of \mathbb{C} , $f:U\to V$ is holomorphic and injective with continuous inverse $g:V\to U$ and $f'(z)\neq 0$ for all $z\in U$, then g is holomorphic with

$$g'(z_0) = \frac{1}{f'(g(z_0))} \quad \text{for all } z_0 \in V$$

Definition Complex logarithm

We can make the exponential function injective by restricting it to $\mathcal{U}_{\alpha}:=\{z:\alpha<\mathrm{Im}(z)<\alpha+2\pi\}$

The codomain of this injective exponential function is $V_{\alpha} := \mathbb{C} \setminus \{\lambda e^{i\alpha} : \lambda \in \mathbb{R}, \lambda > 0\}$

An α -branch of the complex logarithm is the function $\ln_{\alpha}: \mathcal{V}_{\alpha} \to \mathcal{U}_{\alpha}$ defined by $g(z) = \ln|z| + i\arg(z)$

When we choose $\alpha = -\pi$, this gives us the **principal branch** of the logarithm.

A power of a complex number depends on the chosen branch: $z^w = e^{w \ln z}$

Trigonometric functions

$$\cos z = \frac{e^{iz} + e^{-iz}}{2} \qquad \sin z = \frac{e^{iz} - e^{-iz}}{2i}$$

 $\arccos z = -i \ln(z + (z^2 - 1)^{\frac{1}{2}})$ $\arcsin z = -i \ln(iz + (1 - z^2)^{\frac{1}{2}})$

3 Path integrals

Definition *Smooth curve*

Let C be an oriented curve in $\mathbb C$ and let $\gamma:[a,b]\to\mathbb C$ be a parametrization of $C\colon \ \gamma(t)=x(t)+iy(t)$ If $\frac{\mathrm{d}x}{\mathrm{d}t}$ and $\frac{\mathrm{d}y}{\mathrm{d}t}$ exist and are continuous, and $\frac{\mathrm{d}\gamma}{\mathrm{d}t}=\frac{\mathrm{d}x}{\mathrm{d}t}+\frac{\mathrm{d}y}{\mathrm{d}t}\neq 0 \ \ \forall t$, then C is a **smooth curve**.

Definition Path integral

Let C be a smooth curve and f(z) a continuous function on C. Then the **path integral** of f(z) on C is:

$$\int_C f(z) dz = \int_{t=a}^b f(\gamma(t)) \frac{d\gamma}{dt} dt = \int_{t=a}^b f(x(t), y(t)) \cdot \left(\frac{dx}{dt} + i \frac{dy}{dt}\right) dt$$

Proposition

1. Path integrals are independent of the parametrization.

2. Path integrals depend on the orientation of the curve: $\int_{-C} f(z) \, \mathrm{d}z = -\int_{C} f(z) \, \mathrm{d}z$

Proposition Algebraic properties of path integrals

$$\int_C f(z) + g(z) dz = \int_C f(z) dz + \int_C g(z) dz \qquad \int_C cf(z) = c \int_C f(z) dz$$

Definition Length of a curve

The **length** of a curve
$$C$$
 is $\int_{t=a}^{b} |\mathrm{d}z| \; \mathrm{d}t = \int_{t=a}^{b} \left(\left(\frac{\mathrm{d}x}{\mathrm{d}t} \right)^2 + \left(\frac{\mathrm{d}y}{\mathrm{d}t} \right)^2 \right)^{\frac{1}{2}} \; \mathrm{d}t$

Lemma

Let
$$G:[a,b] \to \mathbb{C}$$
. Then $\left| \int_{t=0}^b G(t) \, \mathrm{d}t \right| \le \int_{t=0}^b |G(t)| \, \mathrm{d}t$

Proposition ML-inequality

$$\text{If } |f(z)| \leq M \text{ for all } z \in C \text{, then } \left| \int_C f(z) \, \mathrm{d}z \right| \leq ML \text{, where } L \text{ is the length of } C.$$

Proposition

If
$$f_n(z)$$
 converges uniformly to $f(z)$ on C , then $\lim_{n\to\infty}\int_C f_n(z)\,\mathrm{d}z=\int_C f(z)\,\mathrm{d}z$

3.1 Primitives

Proposition

Suppose f is the derivative of some holomorphic function F on some open set containing the (piecewise) smooth curve C connecting point A to point B. Then

$$\int_C f(z) \, \mathrm{d}t = F(B) - F(A)$$

Definition Primitive

We say f(z) admits a **primitive** in U if there is a holomorphic function F(z) such that F'(z) = f(z) for all $z \in U$.

Corollary

If f admits a primitive in U, then $\int_C f(z) dz = 0$ for every <u>closed</u> curve C in U.

Lemma

Every linear polynomial $f(z) = \alpha + \beta z$ admits a primitive.

3.1.1 Primitives on disk-like domains

Lemma Rectangle lemma (Goursat)

Let R be a rectangle and let f(z) be a holomorphic function on some open set U containing R. Then $\int_{\partial R} f(z) = 0$.

Definition Disk-like domain

An open set $D\subseteq\mathbb{C}$ is a **disk-like domain** if for all pairs of points $z,w\in D$, the rectangle with vertices $z,\operatorname{Re}(w)+i\operatorname{Im}(z),w,\operatorname{Re}(z)+i\operatorname{Im}(w)$ is contained in D

Notation

$$\int_{a}^{b} f(z) \, \mathrm{d}z = \int_{\gamma} f(z) \, \mathrm{d}z$$

where γ is the line segment from a to Re(a) + i Im(b) followed by the line segment from Re(a) + i Im(b) to b.

Proposition

If f is holomorphic on a disk-like domain D and $a \in D$, then f admits a primitive:

Define $F(z) = \int_a^z f(w) dw$. Then F is holomorphic on D with F'(z) = f(z).

Corollary Closed curve theorem

If f is holomorphic on a disk-like domain D and C is a closed curve in D, then $\int_C f(z) \, \mathrm{d}z = 0$

Proposition

If D is a disk-like domain, then for any holomorphic function f on D $\int_a^z f(w) \, \mathrm{d}w = \int_\Gamma f(w) \, \mathrm{d}w$ where Γ is any piecewise smooth curve from a to z.

3.1.2 Primitives on simply connected sets

Definition Homotopic paths

Let $\gamma_0:[0,1]\to D$ and $\gamma_1:[0,1]\to D$ be (piecewise) smooth paths with the same end points:

$$\gamma_0(0) = a$$
 $\gamma_1(0) = a$ $\gamma_0(1) = b$ $\gamma_1(1) = b$

 γ_0 and γ_1 are **homotopic** is there exists a continuous map $H:[0,1]\times[0,1]\to D$ such that

$$H(0,t)=\gamma_0(t) \hspace{0.5cm} H(1,t)=\gamma_1(t) \hspace{0.5cm} H(s,0)=a \hspace{0.5cm} H(s,1)=b \hspace{0.5cm} \text{for all } s,t\in[0,1]$$

Theorem

If γ_0 and γ_1 are homotopic paths, and f is holomorphic in U, then

$$\int_{\gamma_0} f(z) \, \mathrm{d}z = \int_{\gamma_1} f(z) \, \mathrm{d}z$$

Definition Simply connected set

 $D \subseteq \mathbb{C}$ is **simply connected** if it is path-connected and any two paths with the same endpoints in D are homotopic.

Theorem

Suppose $D \subseteq \mathbb{C}$ is open and simply connected and f is a holomorphic function on D.

Then for any path γ from a to z, $\int_{\gamma} f(w) dw$ is independent of the path and gives a well-defined holomorphic function F on D with F'(z) = f(z).

Corollary

If f is holomorphic on an open simply connected set $U\subseteq \mathbb{C}$, then $\int_C f(z)\,\mathrm{d}z=0$ for any closed curve C in U.

Proposition

Let $D\subseteq\mathbb{C}$ be open and simply connected, $z_0\in D$ and $g(z):= \begin{cases} \frac{f(z)-f(z_0)}{z-z_0} & \text{if } z\neq z_0\\ f'(z_0) & \text{if } z=z_0 \end{cases}$

Goursat's rectangle lemma and the closed curve theorem hold for g(z)

Cauchy integral formula 3.2

Theorem Cauchy integral formula

Let f be a holomorphic function on an open simply connected set $U \subseteq \mathbb{C}$.

Let C be a simple closed curve oriented counter-clockwise in U and let a be a point in the interior of C. Then

$$f(a) = \frac{1}{2\pi i} \int_C \frac{f(z)}{z - a} \, \mathrm{d}z \qquad \qquad \text{or alternatively: } \int_C \frac{f(z)}{z - a} \, \mathrm{d}z = 2\pi i \cdot f(a)$$

Analytic functions

Definition Analytic function

A function f(z) is an **analytic function** on $D_R(a)$ if it is defined by a power series:

$$f(z) = \sum_{k=0}^{\infty} c_k (z - a)^k$$
 $R = \frac{1}{\limsup |c_k|^{\frac{1}{k}}}$

Theorem

Suppose f is holomorphic on a disk $D_R(a)$ for some $a \in \mathbb{C}$ and R > 0.

Then there exist unique constants c_1, c_2, \ldots such that

$$f(z) = \sum_{k=0}^{\infty} c_k (z - a)^k \quad \text{for all } z \in D_R(a)$$

Theorem

f is analytic on $D_R(a) \iff f$ is holomorphic on $D_R(a)$

Corollary

The derivative of a holomorphic function is holomorphic.

Uniqueness of holomorphic functions 4.1

Theorem Liouville's theorem

If f(z) is entire (holomorphic on \mathbb{C}) and bounded, then f(z) is constant.

Proposition

Let $f(z) = \sum\limits_{k=0}^{\infty} c_k z^k$ be a power series on an open disk $D_R(0)$ and let $\{z_n\}$ be a sequence of nonzero complex numbers in $D_R(0)$ with $\lim_{n \to \infty} z_n = 0$. Assume $f(z_n) = 0$ for all n. Then f(z) = 0 for all $z \in D_R(0)$.

Proposition

Suppose U is an open and connected subset of $\mathbb C$ and f(z) is a holomorphic function on U. Assume there is a sequence of pairwise distinct complex numbers $\{z_n\}$ in U such that $f(z_n)=0$ for all nand $\lim_{n\to\infty} z_n \in U$. Then f(z) = 0 for all $z \in U$.

Theorem Uniqueness theorem

Let $U \subseteq \mathbb{C}$ be open and connected and $A \subseteq U$ an infinite set with at least 1 accumulation point in U. If f and g are holomorphic on U such that f(z) = g(z) for all $z \in A$, then f(z) = g(z) for all $z \in U$.

4.2 Maximum and minimum modulus

Theorem Mean value theorem

Suppose f(z) is holomorphic on an open set containing the closed disk $D_{\rho}(a)$. Then

$$f(a) = \frac{1}{2\pi} \int_{\rho=0}^{2\pi} f(a + \rho e^{i\varphi}) \,\mathrm{d}\varphi$$

Theorem Maximum modulus theorem

Suppose $D \subseteq \mathbb{C}$ is open and connected and f is a non-constant holomorphic function on D. Then |f| does not admit any local maximum on D.

Corollary

If $K \subseteq \mathbb{C}$ is a compact set and f is non-constant, continuous on K and holomorphic on the interior of K, then |f| attains its maximum on ∂K .

Theorem *Minimum modulus theorem*

Suppose D is open and connected, and |f| is holomorphic and has a local minimum at $z_0 \in D$. Then f is constant or $|f(z_0)| = 0$.

Theorem Open mapping theorem

The image of an open set under a non-constant holomorphic function is open.

4.3 Morera's theorem

Theorem *Morera's theorem*

Let f be a continuous function on an open set $U\subseteq\mathbb{C}$.

If $\int_{\partial R} f(z) = 0$ for all rectangles $R \subseteq U$ whose sides are parallel to the coordinate axes, then f is holomorphic in U. (Most textbooks show a weaker statement where R is any arbitrary closed curve)

Theorem

Suppose $\{f_n\}$ is a sequence of holomorphic functions on an open set U.

If f_n uniformly converges to f on every compact subset of U, then f is also a holomorphic function.

Lemma Schwarz's lemma

Let D be the open disk of radius 1 around the origin. Let $f:D\to D$ be holomorphic with f(0)=0. Then f satisfies the following:

- 1. $|f(z)| \leq |z|$ for all $z \in D$
- 2. |f'(0)| < 1
- 3. Equality holds for 1) and 2) if and only if $f(z)=e^{i\theta_0}z$ for some fixed θ_0

5 Singularities

5.1 Holomorphic functions on line segments

Theorem

Suppose f is continuous on an open set $D\subseteq \mathbb{C}$ and holomorphic on D except possibly on a line segment $L\subseteq D$. Then f is holomorphic throughout D.

Theorem Schwartz's reflection principle

Let U be an open connected subset of the upper half of the complex plane, such that $\partial U \cap \mathbb{R} = L$ is a line segment. Let $U^* := z : \overline{z} \in U$ be the reflection of U across the real axis.

Suppose that f(z) is holomorphic on U and continuous on $U \cup L$, such that $f(z) \in \mathbb{R}$ for all $z \in L$.

Then we can define a holomorphic extension g of f for $U \cup L \cup U^*$:

$$g(z) = \begin{cases} f(z) & \text{if } z \in U \cup L \\ \overline{f(\overline{z})} & \text{if } z \in U^* \end{cases}$$

5.2 Singularities

Definition Deleted neighborhood

$$D_r^{\circ}(z_0) := D_r(z_0) \setminus \{z_0\}$$

Definition Isolated singularity

We say f has an **isolated singularity** if there is a deleted neighborhood $D_r^{\circ}(z_0)$ such that f is holomorphic in $D_r^{\circ}(z_0)$ but f is not holomorphic on $D_r(z_0)$. (Note that f is necessarily discontinuous at z_0 .)

Definition Classification of isolated singularities

Suppose f has an isolated singularity at z_0 .

- 1. If there exists a holomorphic function g in $D_r(z_0)$ such that g(z)=f(z) for all $z\in D_r^\circ(z_0)$, then f has a **removable singularity** at z_0 .
- 2. If there exist holomorphic functions A(z) and B(z) in $D_r(z_0)$ such that

$$A(z_0) \neq 0 \qquad B(z_0) = 0 \qquad f(z) = \frac{A(z)}{B(z)} \qquad \quad \text{for all } z \in D_r^{\circ}(z_0)$$

then f has a **pole** at z_0 . The **order** of a pole is the multiplicity of z_0 as a root of B(z).

3. If f has neither a removable singularity nor a pole at z_0 , then f has an **essential singularity** at z_0

Theorem Riemann's principle for removable singularities

If f has an isolated singularity at z_0 and $\lim_{z\to z_0}(z-z_0)f(z)=0$ then the singularity is removable.

Corollary

If f has an isolated singularity at z_0 and f is bounded in a deleted neighborhood of z_0 , then the singularity is removable.

Theorem

Suppose f has an isolated singularity at z_0 and $\lim_{z\to z_0}(z-z_0)^kf(z)\neq 0$ but $\lim_{z\to z_0}(z-z_0)^{k+1}f(z)=0$. Then f has a pole of order k at z_0 .

Corollary

If f has a pole of order k at z_0 , then $\lim_{z \to z_0} |f(z)| = \infty$

Theorem Casorati-Weierstrass theorem

If f has an essential singularity at z_0 , then the range $R = \{f(z) : z \in D_r^{\circ}(z_0)\}$ is dense in \mathbb{C} .

Theorem *Picard's theorem*

If f has an essential singularity at z_0 , then the range $R = \{f(z) : z \in D_r^{\circ}(z_0)\}$ is either \mathbb{C} or $\mathbb{C} \setminus p$ for some point p.

5.3 Laurent series

Definition Two-sided series

The **two-sided series** $\displaystyle\sum_{k=-\infty}^{\infty}u_k$ converges to L if the following are true:

1.
$$\sum_{k=0}^{\infty} u_k$$
 converges to L_1

1.
$$\sum_{k=0}^{\infty} u_k$$
 converges to L_1 2. $\sum_{k=1}^{\infty} u_{-k}$ converges to L_2 3. $L_1 + L_2 = L$

3.
$$L_1 + L_2 = L$$

Definition Laurent series

A two-sided power series is called a Laurent series.

$$f_1(z) = \sum_{k=1}^{\infty} c_{-k} \left(\frac{1}{z}\right)^k$$
 $f_2(z) = \sum_{k=0}^{\infty} c_k z^k$ $f(z) = f_1(z) + f_2(z) = \sum_{k=-\infty}^{\infty} c_k z^k$

We call $f_1(z)$ the **principal part** and $f_2(z)$ the **analytic part** of the Laurent series.

Proposition

Suppose that f(z) is defined by a Laurent series with the following radii of convergence:

$$R_1 = \limsup |c_{-k}|^{\frac{1}{k}}$$
 (principal part) $R_2 = \frac{1}{\limsup |c_k|^{\frac{1}{k}}}$ (analytic part)

Suppose that $R_1 < R_2$. Then f(z) is a holomorphic function on the annulus $R_1 < |z| < R_2$.

Theorem

If f is holomorphic on the annulus $A:=\{\overline{z:R_1<|z-z_0|< R_2}\}$, then f has a unique Laurent series expansion:

$$f(z) = \sum_{k=-\infty}^{\infty} c_k (z - z_0)^k$$
 $c_k = \frac{1}{2\pi i} \int_C \frac{f(w)}{w^{k+1}} dw$

where C is any circle inside A.

Proposition Laurent series around singularities

Let f be a holomorphic function and c_k the coefficients of its Laurent series.

- 1. If f has a removable singularity at z_0 , then the principal part of its Laurent series at z_0 is 0.
- 2. If f has a pole of order k at z_0 , then $c_{-k} \neq 0$ and $c_{-N} = 0$ for all N > k.
- 3. If f has an essential singularity at z_0 , then the principal part of its Laurent series at z_0 contains infinitely many nonzero terms.

Theorem Partial fraction decomposition theorem

Suppose

$$R(z) = \frac{P(z)}{Q(z)} = \frac{P(z)}{(z - z_1)^{k_1} \dots (z - z_n)^{k_n}}$$

where P,Q are polynomials, z_1,\ldots,z_n are pairwise distinct and $\deg(P)<\deg(Q)$.

Then R(z) can be expanded as a sum of polynomials in $\frac{1}{z-z_j}$, where z_j are roots of Q(z).

$$R(z) = \left(\frac{a_1}{z - z_1}\right) + \left(\frac{a_2}{z - z_1}\right)^2 + \left(\frac{a_3}{z - z_1}\right)^3 + \ldots + \left(\frac{b_1}{z - z_2}\right) + \left(\frac{b_2}{z - z_2}\right)^2 + \left(\frac{b_3}{z - z_2}\right)^3 + \ldots$$

5.4 Residues

Definition Residue

If f has an isolated singularity at z_0 , we call the coefficient c_{-1} of the Laurent series the **residue** of f at z_0 . We denote the residue by $\operatorname{Res}(f; z_0)$.

Proposition

If $f(z) = \frac{A(z)}{B(z)}$ (with A(z), B(z) holomorphic) has a **simple pole** (a pole of order 1) at z_0 , then

Res
$$(f, z_0)$$
 = $\lim_{z \to z_0} (z - z_0) f(z) = \frac{A(z_0)}{B'(z_0)}$

Corollary

If f(z) has a pole of order k at z_0 , then

Res
$$(f, z_0) = \frac{1}{(k-1)!} \frac{\mathrm{d}^{k-1}}{\mathrm{d}z^{k-1}} ((z-z_0)^k f(z))$$

5.5 Winding numbers

Definition

Let γ be a closed curve in $\mathbb C$ and $a \notin \gamma$. Then

$$W(\gamma, a) = \frac{1}{2\pi i} \int_{\gamma} \frac{1}{z - a} \, \mathrm{d}z$$

is called the winding number of γ around a.

The winding number $W(\gamma, a)$ is the number of times that γ winds around a with counterclockwise orientation.

Proposition

If γ is a circle oriented counterclockwise, and a is at the center of γ , then $W(\gamma, a) = 1$.

Proposition

If γ is a simple closed curve in $\mathbb C$ oriented counter-clockwise, then $W(\gamma,a)=\begin{cases} 1 \text{ if } a \text{ is inside } \gamma \\ 0 \text{ if } a \text{ is outside } \gamma \end{cases}$

Theorem

For any closed curve γ and any $a \notin \gamma$, $W(\gamma, a)$ is an integer.

Corollary

For any closed curve γ , W is constant on each connected component of $\mathbb{C}\setminus\gamma$

5.6 Cauchy's residue theorem

Theorem Cauchy's residue theorem

Suppose $U \subseteq \mathbb{C}$ is open and simply connected, and f is holomorphic in U except possibly at isolated points z_1, \ldots, z_n . If γ is a closed curve in $U \setminus \{z_1, \ldots, z_n\}$, then

$$\int_{\gamma} f(z) dz = 2\pi i \sum_{k=1}^{n} W(\gamma, z_k) \operatorname{Res}(f, z_k)$$

Corollary

With u, f, γ as in the previous theorem, if γ is a simple closed curve oriented counterclockwise, then:

$$\int_{\gamma} f(z) dz = 2\pi i \sum_{k=1}^{n} \operatorname{Res}(f, z_k)$$

where the sum is over all singular points z_1, \ldots, z_n that are inside the curve.

Theorem Generalized Cauchy integral formula

Let f be holomorphic on an open and simply connected subset $U \subseteq \mathbb{C}$. Let γ be a simple closed curve in U. Then for all points z inside γ :

$$f^{(k)}(z) = \frac{k!}{2\pi i} \int_{\gamma} \frac{f(w)}{(w-z)^{k+1}} dw$$

Theorem

Let $U \subseteq \mathbb{C}$ be open and connected and let γ be a simple closed curve in U. Let f(z) be a **meromorphic** function (holomorphic everywhere except at poles) on U such that none of the poles or zeroes of f are on γ .

$$\frac{1}{2\pi i} \int_{\gamma} \frac{f'(z)}{f(z)} \, \mathrm{d}z = \#\{\text{zeroes of } f\} - \#\{\text{poles of } f\} \qquad \text{(both counted with multiplicity)}$$

Theorem Argument principle

Let $U\subseteq \mathbb{C}$ be open and connected and let γ be a simple closed curve in U.

Let f(z) be a holomorphic function in U that is non-zero on γ .

$$\frac{1}{2\pi i} \int_{\gamma} \frac{f'(z)}{f(z)} \, \mathrm{d}z = W(f(\gamma), 0) = \#\{\text{zeros of } f \text{ inside } \gamma \text{ counted with multiplicity}\}$$

Theorem Rouché's theorem

Let $U\subseteq\mathbb{C}$ be open and simply connected and $\gamma\subseteq U$ a simple and closed curve.

Let f and g be holomorphic functions in U. Suppose f and g are nonzero on γ and |f(z)| > |g(z)| on γ .

 $\#\{\text{zeros of } f+g \text{ inside of } \gamma \text{ counted with multiplicity}\} = \#\{\text{zeros of } f \text{ inside of } \gamma \text{ counted with multiplicity}\}$

5.6.1 Applications of the residue theorem

Evaluating real rational integrals using residues

Let P(x), Q(x) be polynomials with $deg(Q) \ge deg(P) + 2$, such that Q has no real roots.

Then the (real) integral $\int_{-\infty}^{\infty} \frac{P(x)}{Q(x)} \, \mathrm{d}x$ is equal to $\int_{C} \frac{P(z)}{Q(z)} \, \mathrm{d}z$, where C is a semicircle inside the top half of the complex plane, centered at the origin, whose radius approaches infinity. This is true because the integral over the arc of the semicircle converges to 0 as R goes to infinity. The path integral can be computed using the residue theorem.

The same method can be used for certain other functions, as long as the real integral is absolutely convergent and it can be proven that the path integral over the arc of the semicircle converges to 0 as the radius approaches infinity.

Proposition Evaluating two-sided sums using residues

Let f be a function with isolated singularities at z_1, \ldots, z_m that is bounded by $\frac{A}{|z|^2}$ for large |z|.

Let $\phi = \pi \cot(\pi z)$ and $\psi = \pi \csc(\pi z)$. Then:

$$\sum_{n=-\infty}^{\infty} f(n) = -\sum_{k=1}^{m} \operatorname{Res}(f(z)\phi(z), z_k) \qquad \sum_{n=-\infty}^{\infty} (-1)^n f(n) = -\sum_{k=1}^{m} \operatorname{Res}(f(z)\psi(z), z_k)$$

Index

 α -branch, 4

absolutely convergent, 2 Algebraic properties of path integrals, 5 analytic function, 7 analytic part, 10 Argument principle, 12

Casorati-Weierstrass theorem, 10 Cauchy integral formula, 7 Cauchy's residue theorem, 12 Cauchy-Hadamard theorem, 4 Cauchy-Riemann equations, 3 Closed curve theorem, 6 complex differentiable, 3 complex logarithm, 4 continuous, 3 Convergence tests, 2 convergent, 2 converges uniformly, 3

Deleted neighborhood, 9 disk-like domain, 6

entire, 3 essential singularity, 9

Evaluating two-sided sums using residues, 13

Fundamental theorem of algebra, 2

Generalized Cauchy integral formula, 12

holomorphic, 3 homotopic, 6

Inverse function theorem, 4 isolated singularity, 9

Laurent series, 10 Laurent series around singularities, 10 length, 5 Liouville's theorem, 7

Maximum modulus theorem, 8 Mean value theorem, 8 meromorphic, 12 Minimum modulus theorem, 8 ML-inequality, 5 Morera's theorem, 8

Open mapping theorem, 8 order, 9

Partial fraction decomposition theorem, 11 path integral, 4 Picard's theorem, 10 pole, 9 power series, 2 primitive, 5 principal branch, 4 principal part, 10

radius of convergence, 2 Ratio test, 2 real differentiable, 3 Rectangle lemma (Goursat), 5 removable singularity, 9 residue, 11 Riemann's principle for removable singularities, 9 Root test, 2 Rouché's theorem, 12

Schwartz's reflection principle, 9 Schwarz's lemma, 8 simple pole, 11 simply connected, 6 singularity, 9 smooth curve, 4

two-sided series, 10

Uniqueness theorem, 8

Weierstrass M-test, 4 winding number, 11